Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte–specific expression in vivo
نویسندگان
چکیده
The alpha1(X) collagen gene (Col10a1) is the only known hypertrophic chondrocyte-specific molecular marker. Until recently, few transcriptional factors specifying its tissue-specific expression have been identified. We show here that a 4-kb murine Col10a1 promoter can drive beta-galactosidase expression in lower hypertrophic chondrocytes in transgenic mice. Comparative genomic analysis revealed multiple Runx2 (Runt domain transcription factor) binding sites within the proximal human, mouse, and chick Col10a1 promoters. In vitro transfection studies and chromatin immunoprecipitation analysis using hypertrophic MCT cells showed that Runx2 contributes to the transactivation of this promoter via its conserved Runx2 binding sites. When the 4-kb Col10a1 promoter transgene was bred onto a Runx2(+/-) background, the reporter was expressed at lower levels. Moreover, decreased Col10a1 expression and altered chondrocyte hypertrophy was also observed in Runx2 heterozygote mice, whereas Col10a1 was barely detectable in Runx2-null mice. Together, these data suggest that Col10a1 is a direct transcriptional target of Runx2 during chondrogenesis.
منابع مشابه
XBP1S associates with RUNX2 and regulates chondrocyte hypertrophy.
BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of ...
متن کاملRunx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer
We have recently shown that a 150-bp Col10a1 distal promoter (-4296 to -4147 bp) is sufficient to direct hypertrophic chondrocyte-specific reporter (LacZ) expression in vivo. More recently, through detailed sequence analysis we identified two putative tandem-repeat Runx2 binding sites within the 3'-end of this 150-bp region (TGTGGG-TGTGGC, -4187 to -4176 bp). Candidate electrophoretic mobility ...
متن کاملSmad-Runx interactions during chondrocyte maturation.
BACKGROUND Intracellular signaling triggered by bone morphogenetic proteins (BMPs) results in activated Smad complexes that regulate transcription of BMP-responsive genes. However, the low specificity of Smad binding to regulatory sequences implies that additional tissue-specific transcription factors are also needed. Runx2 (Cbfal) is a transcription factor required for bone formation. We have ...
متن کاملMaturational disturbance of chondrocytes in Cbfa1-deficient mice.
Cbfa1, a transcription factor that belongs to the runt-domain gene family, plays an essential role in osteogenesis. Cbfa1-deficient mice completely lacked both intramembranous and endochondral ossification, owing to the maturational arrest of osteoblasts, indicating that Cbfa1 has a fundamental role in osteoblast differentiation. However, Cbfa1 was also expressed in chondrocytes, and its expres...
متن کاملMAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development
Mastermind-like 1 (MAML1) is a transcriptional co-activator in the Notch signaling pathway. Recently, however, several reports revealed novel and unique roles for MAML1 that are independent of the Notch signaling pathway. We found that MAML1 enhances the transcriptional activity of runt-related transcription factor 2 (Runx2), a transcription factor essential for osteoblastic differentiation and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 162 شماره
صفحات -
تاریخ انتشار 2003